
Learning to Rank for Alert Triage

Michael Bierma, Justin E. Doak (JD), and Corey Hudson
∗Sandia National Laboratories

Livermore, California
mbierma,jedoak,cmhudso@sandia.gov

Abstract—As cyber monitoring capabilities expand and
data rates increase, cyber security analysts must filter
through an increasing number of alerts in order to identify
potential intrusions on the network. This process is often
manual and time-consuming, which limits the number
of alerts an analyst can process. This generation of a
vast number of alerts without any kind of ranking or
prioritization is often referred to as alert desensitization
[1]. This is the phenomenon where competent analysts
become so numbed by the barrage of false positives that
they are unable to identify the true positives, leading
to unfortunate breaches. Our goal is to alleviate alert
desensitization by placing the most important alerts at the
front of the queue. With less time and energy expended
investigating false positives, critical alerts may not be
overlooked allowing timely responses to potential breaches.
This paper discusses the use of supervised machine learn-
ing to rank these cyber security alerts to ensure that
an analyst’s time and energy are focused on the most
important alerts.

I. INTRODUCTION

The effort to use supervised machine learning to
rank cyber security alerts began as an laboratory-
directed research and development (LDRD) project
at Sandia National Laboratories (SNL) named Ac-
tive Learning for Alert Triage (ALAT). There was
roughly a six-month period where no work was
performed on ALAT because the LDRD project
had ended and a customer to fund a follow-on
project had not been identified. Thus, one of our
early goals was to revitalize the codebase, including
an extensive refactoring and also the addition of
numerous unit tests. We considered this essential to
facilitate the addition of novel functionality and to

∗Sandia National Laboratories is a multi-program laboratory man-
aged and operated by Sandia Corporation, a wholly owned subsidiary
of Lockheed Martin Corporation, for the U.S. Department of En-
ergy’s National Nuclear Security Administration under contract DE-
AC04-94AL85000.

Fig. 1. Screenshot of the SCOT alert management system

ease future deployments. ALAT has primarily been
developed for integration with SNL’s internal alert
management system, Sandia Cyber Omni Tracker
(SCOT) [2]. See Fig. 1 for a screenshot of SCOT.
(We have also demonstrated ALAT’s effectiveness
on registry and malware data to show the applica-
bility of ranking and active learning to other cyber
security domains [3]). Currently, we are preparing
a trial deployment of ALAT and SCOT for the
Department of Homeland Security (DHS).

A. Feature Extraction and Evaluation
Alerts ranked by ALAT are pulled from SCOT

and are potentially comprised of thousands of fea-
tures after feature extraction. Some of these features
may be useful for predicting the severity of an alert,
while others may not be. The extraction of all pos-
sible features from every alert is time consuming.
Not only does it take time to extract the features,
but the more features we use, the longer it takes
us to build our model(s). It is important for us to

build our models efficiently because we potentially
use hundreds of thousands of alerts in the training
process and also need to process alerts in near real-
time. Using a smaller set of features that correlate
well with the prediction task allows us to use a
larger portion of the labeled data for training and
to rank new alerts efficiently.

In addition to extracting features directly from
the alerts, we also query additional data sources
for information to augment our feature vectors. For
example, the Security IDentifier Database (SIDD)
aggregates IP and domain blocklists from multiple
departments and agencies. Additional features we
extract from SIDD (e.g., Does this IP that we
extracted from the alert appear in any of the block-
lists?) may improve our model(s) and the output
rankings. We also employ model stacking, where
the output of a model is treated as a feature to be
used by the the ranking model. We give an example
of this when discussing the use of a topic model for
feature extraction in Section III.

B. Learning to Rank

When the purpose of machine learning is to rank
items, it is often referred to as Learning to Rank
(LTR) [4]. We explored many LTR models for
ALAT and are currently using the probability es-
timates from a binary classifier, implemented using
a random forest model, for ranking.

C. SCOT and DHS Deployments

The ALAT framework was initially conceived to
rank alerts within SCOT for SNL’s internal cyber
security operations. This provided us with access
to labeled data for supervised machine learning.
Each week, a given cyber security analyst, denoted
the incident handler, has the responsibility of triag-
ing alerts that come into the SCOT system. Some
of these are closed as false positives; some are
promoted to an event; and the vast majority are
simply viewed and never closed nor promoted. We
now have a labeled dataset of closed and promoted
alerts and a much larger dataset of unlabeled alerts.
It turns out that this is an excellent fit for active
learning: there are some labeled alerts, but the vast
majority are unlabeled and it is costly to obtain new
labels [5]. The active learning part of the project
determines which of the unlabeled alerts would most

improve the output of the learned models if labels
were available for them. There is a certain expense
in terms of an analyst’s time to explicitly process
these queried alerts, and active learning allows us
to judiciously use this resource to obtain these
valuable, additional labels.

While ALAT has had a very synergistic rela-
tionship with SCOT, ALAT can be applied in any
context where alert-like entities are being generated
and then processed by an analyst. Processed in this
context means they are discarded (i.e., I don’t care
about this.), highlighted (i.e., I might care about
this.), or in process (e.g., I don’t know what to
do with this yet.). It is our belief that DHS cy-
ber security operational environments will generate
alerts of some kind and place those in a queue
for analysts to process. Thus, it should be possible
to extract implicit labels depending on how they
manipulate the various alerts. We also anticipate
utility in active learning in these environments as
there is almost certainly value to be had by obtaining
labels on some of the unlabeled alerts to improve
model output.

II. METHODS

One technique we used to evaluate feature im-
portance was the insertion of a random feature into
our model. Any feature that cannot outperform the
random feature is unlikely to have any ability to
improve the rankings output by our model. All
features that are less important than the random
feature either need to be improved or removed from
our feature vectors for a specific deployment. (Each
deployment requires its own feature evaluation to
determine what features are useful in that environ-
ment.)

To determine the effectiveness of active learning,
one approach is to compare it to passive learning
where alerts are queried randomly for labels. This
is discussed in more detail in Section III.

We developed a method for evaluating our rank-
ing system to account for the time-dependent nature
of alerts. While many machine learning evaluation
systems use n-fold cross validation, we needed a
method that could segregate our data into time
series blocks. To solve this problem, we built a
model on alerts from time range X, then tested
that model on alerts from time range X+1. We then

evaluated our model on time ranges farther out (i.e.,
X+2, X+3, etc.), which may give us insight into
how rapidly adversaries evolve and the associated
concept drift. Concept drift occurs when models
become less accurate as they age and no longer
accurately model the current tactics, techniques,
and procedures (TTPs) of the adversary. Because
adversaries do adapt and change their TTPs over
time, we needed evaluation metrics that take this
into account. This gives us a more representative
evaluation of our system in a dynamic environment
and allows us to investigate the effect of concept
drift on models being used to detect the TTPs of
various adversaries.

As TTPs for various adversaries evolve over
time, it is important to account for these time-
series characteristics in the models we build or
in how we build those models. When compro-
mises are detected, network and/or host indicators
of compromise (IOCs) [6] for the TTPs used by
those adversaries are developed to prevent future
exploits from succeeding. In response, adversaries
modify their TTPs to evade detection by the IOCs
associated with them. The models that we use to
rank alerts become stale over time as adversaries
improve their TTPs or intentionally modify them
to evade detection. Models built at time X may be
very effective at ranking alerts at time X+1, but may
lose effectiveness as the gap between the data used
to build a model and the live data increases (i.e.,
concept drift).

We quantify concept drift by building our random
forest model from three months of labeled data, or
approximately 10,000 alerts (months 1-3). Next, we
evaluate our model’s performance on alerts from
the next three-month window (months 4-6) us-
ing class-averaged accuracy (CAA)1 and precision-
recall curves [7]. We then slide our window 1
month and evaluate again (months 5-7). This sliding
window analysis was continued for the remaining
alerts in our dataset ending with months 17-19.
Using this approach, we were able to quantify the
concept drift of cyber security alerts, which may
give us some insight into the speed at which the
TTPs of adversaries evolve.

1CAA is calculated by determining the accuracy separately for each
class and then taking an average across the classes.

Fig. 2. Plot of feature importances for random forest model

Note that traditional machine learning evaluation
techniques, such as n-fold cross validation, are not
suitable in this context because they do not consider
the time-series nature of alerts, which is critical
to our analysis. If alerts are randomly sampled to
create the various folds, we can end up building our
models with alerts farther out in time than the ones
used to evaluate the model. This is unrealistic of
real world performance as we cannot build models
using knowledge from the future.

III. RESULTS

To determine the importance of each feature in
our random forest model, we use the relative depth
of a feature in the various paths to decision nodes.
Features used in making decisions towards the top
of the tree impact the final prediction for a larger
fraction of the input samples. Thus, the expected
number of input samples whose predictions they
might influce can be used as an estimate of the im-
portance of the feature [8]. Figure 2 shows how the
extracted features compare to the random feature.
Features that performed better than the random fea-
ture are shaded green, while features that performed
more poorly are left unshaded. The importance val-
ues for unshaded features have been multiplied by
negative one in order to easily differentiate them in
the figure. In our entire feature set, the most useful
features were associated with topic membership
or time. To determine topic membership, we first
generated a Latent Dirichlet Allocation (LDA) [9]
model using a corpus consisting of the raw text
from the various alerts. For each alert, the model

0 900 1800 2700 3600 4500
of Queried Labels

0.70

0.75

0.80

0.85

C
A

A

Random

Uncertainty (entropy)

Fig. 3. Comparison of active learning to passive learning

assigned probabilities that the various topics were
associated with that alert. The number of topics in
the LDA model was set a priori, i.e., the model did
not determine heuristically how many topics were
appropriate for the corpus represented by the alerts.
LDA is based on the bag-of-words model where the
ordering of words and grammar do not impact the
algorithm, i.e., it only uses counts of the various
words in each document (e.g., an alert). Four of
the seven features that were more important than
the random feature were LDA topics. Three time-
based features were more important than the random
feature including day of the month, month of the
year, and the day of the week.

Figure 3 shows how an active learning algorithm,
Uncertainty Sampling, compares to passive learn-
ing. While the details of how this comparison are
performed are somewhat complex, essentially each
algorithm (active learning and passive learning) gets
to choose a certain number of points to query at
each iteration. After labels are obtained, the models
are rebuilt and the CAA is obtained. (CAA is a
better metric than accuracy for data sets where there
is skew in the data. In our data, promoted alerts
are far less frequent than closed alerts.) Point 0 on
the x-axis represents the performance of the initial
model built with 10% of the labeled data before any
queries. The figure shows that Uncertainty Sampling
has a higher CAA than passive learning for all the
experiments once the algorithms were allowed to

Fig. 4. Precision-recall curves for the models tested against the first
1,000 alerts

query the unlabeled alerts.
We next ran a series of experiments to explore

the potential presence of concept drift in our data.
In Figure 4, we see the performance of the models
on the first 1,000 alerts. These alerts were the
newest alerts that the models could rank, resulting
in excellent area under the curve scores. For this
initial test, we built a model nine different times
using a different (random) sample of alerts from
our training set.

As we moved the sliding window for the time-
series evaluation, we continued to use the same
nine models described above so that we could see
the impact of concept drift, if any, across multiple
models. In Figure 5, we see noticeable drops in
CAA when the data is 5 and 6 months older than
the training data. We also note that the performace
overall is inferior to the initial evaluation on the
first 1,000 alerts. This performance drop, especially
around the 5-6 month mark, is potentially caused
by concept drift. Thus, as our models grow older,
we can expect them to be less effective against the
evolving TTPs of our adversaries.

IV. CONCLUSIONS

Our experiments with feature evaluation showed
that only the features based on LDA or time were
more important than the random feature. Thus,
additional feature extraction and evaluation is re-
quired to identify new, more predictive features.

Fig. 5. CAA for sliding window evaluation

We showed that, under our experimental conditions,
active learning outperforms passive learning and
it thus may be an effective technique at making
full use of the unlabeled portion of alert datasets.
The time-series evaluation appears to indicate that
the TTPs of various adversaries significantly evolve
slightly more often than every 6 months. It is im-
portant to consider this evolution when developing
techniques to defend against adversaries.

V. FUTURE WORK

We have expanded the scope of our project to
include a trial deployment for DHS. This will allow
us to evaluate the performance of our ranking sys-
tem in a much broader context and at a larger scale.
Additionally, we would like to explore techniques
to improve our rankings. By using the Laplace
correction to smooth probability estimates generated
by our binary classifier [10], we hope to address
complications that might arise with ties in our
ranking system. These ties can be observed when
multiple alerts are given the same rank.

REFERENCES

[1] J. Goldfarb. (2014) 7 Tips To Improve ’Signal-to-Noise’ In The
SOC. [Online]. Available: http://www.darkreading.com/analyt-
ics/7-tips-to-improve-signal-to-noise-in-the-soc/d/d-id/1204605

[2] T. Bruner. (2014) SCOT - Sandia Cyber Omni Tracker.
[Online]. Available: http://getscot.sandia.gov/

[3] J. Doak, J. Ingram, and J. Johnson, “Active learning for
alert triage,” Sandia National Laboratories, SAND report
SAND2015-20773, December 2014, Official Use Only.

[4] T.-Y. Liu, “Learning to rank for information retrieval,” Foun-
dations and Trends in Information Retrieval, vol. 3, no. 3, pp.
225–331, 2009.

[5] B. Settles, “Active learning,” Synthesis Lectures on Artificial
Intelligence and Machine Learning, vol. 6, no. 1, pp. 1–114,
2012.

[6] Cyber Security Community. OpenIOC. [Online]. Available:
http://www.openioc.org

[7] T. Fawcett, “An introduction to roc analysis,” Pattern recogni-
tion letters, vol. 27, no. 8, pp. 861–874, 2006.

[8] scikit-learn developers. Ensemble methods. [Online]. Available:
http://scikit-learn.org/stable/modules/ensemble.html

[9] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet
allocation,” the Journal of machine Learning research, vol. 3,
pp. 993–1022, 2003.

[10] F. Provost and P. Domingos, “Tree induction for probability-
based ranking,” Machine Learning, vol. 52, no. 3, pp. 199–215,
2003.

